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ABSTRACT
Recent probabilistic model checking techniques can verify relia-

bility and performance properties of software systems affected by

parametric uncertainty. This involves modelling the system be-

haviour using interval Markov chains, i.e., Markov models with

transition probabilities or rates specified as intervals. These inter-

vals can be updated continually using Bayesian estimators with

imprecise priors, enabling the verification of the system properties

of interest at runtime. However, Bayesian estimators are slow to

react to sudden changes in the actual value of the estimated param-

eters, yielding inaccurate intervals and leading to poor verification

results after such changes. To address this limitation, we introduce

an efficient interval change-point detection method, and we inte-

grate it with a state-of-the-art Bayesian estimator with imprecise

priors. Our experimental results show that the resulting end-to-end

Bayesian approach to change-point detection and estimation of

interval Markov chain parameters handles effectively a wide range

of sudden changes in parameter values, and supports runtime prob-

abilistic model checking under parametric uncertainty.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; •Computer systems organization→Reliability; •
Mathematics of computing→Bayesian computation;Metro-
polis-Hastings algorithm.

KEYWORDS
Change-point detection, interval Markov chains, Bayesian infer-

ence, imprecise probability, probabilistic model checking, runtime

verification, interval model checking
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1 INTRODUCTION
Detecting sudden changes in the parameters of a software or soft-

ware-controlled system has a plethora of important applications. For

a system undergoing development, such changes may correspond

to defects being introduced in the code base, and knowing the time

when the changes occurred can help identify and remove these

defects. For a running system, sudden parameter changes may

correspond to faults in a system component such as a disk drive

storing a system database, or a sensor used by a robot. Alternatively,

they may be due to violations of service-level agreements by third-

party components such as a public cloud service, or to cyberattacks,

or to environmental changes such as a sudden increase in the rate of

requests received by a web server. In all these scenarios, detecting

the change supports the identification of its cause, the analysis of its

impact on the system, and (if needed) the mitigation of this impact.

Given these benefits, numerous change-point detection (CPD)

methods have been developed to estimate the time of such sudden

changes and the new values of the affected parameters. These meth-

ods have been successfully used in domains ranging from software

engineering [20, 25] to medicine [38] and finance [46], and are

described in multiple surveys, e.g., [1, 17, 42, 44].

In this paper, we focus on self-adaptive systems whose closed-

loop software controllers use probabilistic model checking of Mar-
kovian models at runtime [11, 13, 29] to re-verify the satisfaction of

non-functional requirements as new observations of the unknown

model parameters are obtained [9, 30]. Consequently, the prompt

detection of sudden changes can contribute to the timely identifica-

tion of requirement violations and support adaptation to recover

from such violations.

Our paper introduces an interval Change-Point Detection (iCPD)

method that complements existing CPD methods by efficiently

solving an important and previously unexplored variant of the

problem. The key distinguishing features of iCPD (and thus the

main contributions of our paper) are summarised below:
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(1) To the best of our knowledge, iCPD is the first method that tack-

les the detection of sudden changes in systems affected by para-

metric uncertainty and verified through the probabilistic model

checking of interval Markov chains. Interval Markov chains

are Markov models whose transition probabilities (for discrete-

time Markov chains) and transition rates (for continuous-time

Markov chains) are expressed as intervals due to the epistemic

and/or aleatory uncertainty affecting the corresponding system

parameters. Examples of such parameters include the success

probability of a web service invocation and the measurement

rate of a sensor, as incomplete knowledge and parametric vari-

ability often mean that these can only be estimated correctly

using intervals such as [0.92, 0.95] and [6s−1, 7.5s−1], respec-
tively. The use of point estimates for these parameters masks

their uncertainty [6]; for Markov models, this can lead to highly

inaccurate verification results that may endorse invalid software

engineering decisions [12, 39].

(2) iCPD is integrated with a recently developed Bayesian estimator
with imprecise priors [45], and computes new intervals of priors

for this estimator after each sudden change detected in the

monitored transition parameter (i.e., probability or rate) of a

Markov chain. Bayesian estimators with imprecise priors (also

called robust Bayesian estimators) [6] associate intervals with the
uncertain parameters of a system; they use intervals as priors,

and their posteriors are also intervals.

(3) Its integration with a robust Bayesian estimator enables iCPD

to decide in constant time whether a new system observation

(corresponding to a state transition in the Markov chain) should

trigger the full CPD analysis, which is computationally more

expensive. This lightweight decision mechanism makes iCPD

particularly suited for online use, and is missing from traditional

CPD methods.

(4) Used in conjunction, iCPD and the robust Bayesian estima-

tor [45] form an end-to-end Bayesian approach to change-point

detection and estimation of interval Markov chain parameters.

The approach supports the effective runtime probabilistic model
checking of systems affected by parametric uncertainty.

We structured the rest of the paper as follows. Section 2 provides

the required background on probabilisticmodel checking and robust

Bayesian estimators. Our iCPD change-point detection method and

its integration with a robust Bayesian estimator are described in

Section 3, and their effectiveness is evaluated in Section 4. Finally,

Section 5 compares iCPD to existing CPD methods, and Section 6

summarises the paper and suggests areas of future work.

2 PRELIMINARIES
2.1 Probabilistic model checking
Probabilistic model checking (PMC) is a formal technique for veri-

fying the correctness, reliability, and performance of systems char-

acterised by stochastic behaviour [3, 36], where this behaviour is

modelled by Markov chains. Formally, a Markov chain is a tuple

M = (S, s0, δ ), where S is a finite set of states, s0 ∈ S is the initial

state, and δ is a state-transition function defined as:

• δ : S × S → [0, 1] for discrete-time Markov chains (DTMCs),

with δ (si , sj ) = pi j giving the probability of transition between

states si , sj ∈ S , and
∑
sj ∈S δ (si , sj ) = 1;

• δ : S × S → R≥0 for continuous-time Markov chains (CTMCs),

with δ (si , sj ) = ri j giving the rate of transition between states

si , sj ∈ S .
PMC supports the verification of discrete-time properties (e.g.,

successful completion probability of a protocol) using DTMCs, and

of continuous-time properties (e.g., expected execution time of an

application, or energy consumption of a device) using CTMCs. To

this end, the states of Markov models are labelled with atomic

propositions that hold in those states, and the properties to verify

are expressed in temporal logics over these atomic propositions,

e.g., probabilistic temporal tree logic (PCTL) [8, 33] for DTMCs

and continuous stochastic logic (CSL) [2, 4] for CTMCs. Efficient

PMC algorithms are available, and are implemented by widely used

probabilistic model checkers such as PRISM [37] and Storm [21].

Recent advances in PMC [12, 18, 19, 40] support the verifica-

tion of interval Markov chains [35]. In these models, the transition

probabilities of DTMCs and the transition rates of CTMCs can be

specified as intervals, enabling the representation of parametric

uncertainty for the modelled systems. Accordingly, the verification

of interval Markov chains with automated tools such as Prism-

PSY [18] and FACT [12] yields value intervals for the reliability and

performance properties of the verified system.

2.2 Robust Bayesian estimation of interval
Markov chain parameters

Building on the theory of imprecise probability with sets of priors

(IPSP) [43], recent research has introduced a robust Bayesian esti-

mator [45] for the transition parameters of interval Markov chains.

This IPSP estimator supports the use of imprecise prior knowledge

in the Bayesian learning process, and provides bounded estimates

on transition parameters. Due to space constraints, we only detail

the operation of the IPSP estimator for a generic transition probabil-

ity pi j between states si and sj of an interval DTMC (iDTMC); the

changes needed to use the estimator for an interval CTMC (iCTMC)

transition rate are mentioned at the end of the section.

Given a DTMC (S, s0, δ ) and a state si ∈ S , the outgoing tran-

sitions from si follow a multinomial distribution with parameters

given by the probabilities δ (si , ·) of these transitions. As such, if
we observe ni j transitions from si to a state sj out of ni outgoing
transitions from si (a scenario labelled ‘data’ in the equations be-

low), the binomial likelihood for this scenario is (by omitting the

combinatorial factor that will be cancelled in the Bayes formula):

Pr(data | pi j ) = p
ni j
i j (1 − pi j )

ni−ni j , (1)

where pi j = δ (si , sj ). As usual, for mathematical convenience in

Bayesian inference, the IPSP estimator uses a conjugate prior distri-
bution for the above likelihood function, i.e., a beta distribution of

pi j , thus ensuring that the posterior is also beta distributed. How-

ever, unlike point estimators that use the posterior mean as an

approximation for the value of pi j (e.g., [24]), the IPSP estimator

can, more realistically, operate with imprecise prior knowledge ob-
tained, for instance, from a group of experts or derived from noisy

historical data.
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The IPSP estimator uses the canonical parameterisation Beta
(
n
(0)

i ,

p
(0)

i j
)
of the beta distribution,

1
which allows an intuitive interpre-

tation of p
(0)

i j as the “best prior guess”, and of n
(0)

i as the size of an

imaginary sample on which the prior estimation p
(0)

i j is based [43].

However, instead of point values for the two prior parameters, the

IPSP estimator operates with prior intervals[
ni

(0),ni
(0)
]
,

[
pi j

(0),pi j
(0)]

(2)

for n
(0)

i and p
(0)

i j , respectively. Accordingly, the lower and upper

bounds for p
(ni )
i j , the posterior of interest after ni observations of

outgoing transitions from state si of the iDTMC, can be calculated

in constant time as [43]:

pi j
(ni ) =


ni (0)pi j (0)+ni j

ni (0)+ni
, if

ni j
ni ≥ pi j

(0)

ni (0)pi j (0)+ni j
ni (0)+ni

, otherwise

pi j
(ni ) =


ni (0)pi j

(0)
+ni j

ni (0)+ni
, if

ni j
ni ≤ pi j

(0)

ni (0)pi j
(0)
+ni j

ni (0)+ni
, otherwise

(3)

The IPSP robust estimator [45] is generic to Bayesian inference

in canonical exponential families [43], where the Gamma-Poisson

setup is typically applied (cf. Proposition 5.4 and Example 5.5 in [7,

pp.266–277]). Thus, IPSP can be applied to iCTMC transition rates

by replacing the beta priors with gamma priors.

3 INTERVAL CHANGE-POINT DETECTION
3.1 Problem definition
Our iCPD method is applicable to systems modelled by interval

Markov chains whose transition parameters are associated with

system parameters affected by sudden changes. Given such a system

and an interval Markov chain that models its behaviour, we assume

that:

(1) The system is monitored and all the events that correspond to

state transitions within the Markov chain (and, for iCTMCs, the

timing of these events) are recorded. Examples of such events

include the invocation of a method, the receipt of a database

query, and the failure or repair of a server.

(2) The intervals for the transition probabilities or rates of the

interval Markov chains are continually updated using the IPSP

robust estimator from Section 2.2.

The information required to detect sudden changes in the prob-

ability pi j of transitioning between states si and sj of an iDTMC

consists of the sequence of observations o1,o2, . . . ,oni of all events
corresponding to the outgoing transitions from state si , where

∀k = 1, 2, . . . ,ni , ok =

{
1, if the k-th transition is to state sj

0, otherwise
(4)

1
i.e., a parameterisation in which the shape parameters α and β of the common

parameterisation Beta(α , β ) are replaced by n(0)

i = α + β and p(0)i j = α/(α + β ),
where the superscript ‘(0)’ reflects the fact that these values represent the knowledge

before any observation is available.

The monitoring window, defined asw = ni for an iDTMC, may be

fixed (in which case only the most recent ni observations are used)
or may include all observations since the monitoring began.

Given this information, the interval change-point detection prob-
lem for an iDTMC transition probability pi j is to determine:

(1) whether the value of pi j experienced a sudden change within

the monitoring windoww ;

(2) if the answer to (1) is positive, the time step from {1, 2, . . . ,ni }
when the change occurred;

(3) if the answer to (1) is positive, new prior intervals (2) for the

robust IPSP estimator of pi j .
The interval change-point detection problem for an iCTMC tran-

sition rate ri j is defined similarly. In this case, the system monitor

needs to also record the sojourn times t1, t2, . . . , tni that the sys-
tem spent in state si prior to undertaking each of the ni outgoing
transitions given by observations (4), and the monitoring window

is defined asw =
∑ni
k=1 tk .

3.2 The iCPD method
Fig. 1 shows a generic window of w = ni observations (4) for an
iDTMC, where the shaded circles correspond to transitions from

state si to state sj , and the empty circles correspond to transitions

from si to other states than sj . Assuming that the transition proba-

bility pi j undergoes a sudden change from pi j =a to pi j =b within

this time window; we use a random variable x to denote the un-

known change point in the sequence, and N (x) =
∑x
k=1 ok and

M(x)=
∑ni
k=x+1 ok to denote the number of transitions from si to

sj before and after the time step x , respectively. An analogous nota-

tion can be defined for a transition rate ri j of an iCTMC changing

suddenly from ri j = a to ri j = b within the time window; in this

case, we have N (x) =
∑x
k=1 ok tk and M(x) =

∑ni
k=x+1 ok tk . Given

the parametric uncertainty associated with systems modelled by

interval Markov chains, not only the change time x but also the

precise values of a and b are unknown. The following proposition

defines a Bayesian estimator for these values (this is a formalisation

of a known result, e.g., presented only for DTMCs in [25]).

Proposition 3.1. Given a prior joint distribution f (a,b, x) for the
unknown values a and b of an interval Markov chain parameter, and
for the unknown time x when the parameter value changes from a to
b, the (marginal) estimates for the three unknowns are given by the
posterior joint distribution

aN (x )(1−a)x−N (x )bM (x )(1−b)w−x−M (x ) f (a,b, x)∫∫∫
Da

N (x )(1−a)x−N (x )bM (x )(1−b)w−x−M (x ) f (a,b, x) da db dx
(5)

for an iDTMC, where D = [0, 1] × [0, 1] × {1, 2, . . . ,w}, and

aN (x )e−axbM (x )e−b(w−x ) f (a,b, x)∫∫∫
D aN (x )e−axbM (x )e−b(w−x ) f (a,b, x) da db dx

(6)

for an iCTMC, where D = [0,∞) × [0,∞) × [0,w].2

2
We use Lebesgue-Stieltjes integration in (5), (6) and throughout the rest of the paper,

to cover in a compact way both discrete and continuous prior distributions f , as these
integrals naturally reduce to sums for discrete distributions.



ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhao et al.

Figure 1: Sequence of w successive transitions from state si
of a DTMC; shaded circles denote transitions to state sj .

posterior
interval
eq. (3)

false

posterior
interval
eq. (3)true

change point eq. (16)
new priors eq. (17) corrected

estimates
eq. (19)

PMC

IPSP
estimation
1 2 iCPD

triggering

3 iCPD
analysis

Retrospective
IPSP estimation
4

prior
intervals
eq. (2)

observations
eq. (4)

Figure 2: Robust Bayesian change-point detection and esti-
mation for interval Markov chain parameters (shown for an
iDTMC transition probability) supports runtime probabilis-
tic model checking (PMC) under parametric uncertainty.

Proof. As in (1), we can write the likelihood function associated

with the iDTMC ‘data’ from Fig. 1 as

L(a,b, x ; data) = Pr (data until x |a,b, x)·Pr (data after x |a,b, x)

=
(
aN (x )(1 − a)x−N (x )

)
·

(
bM (x )(1 − b)w−x−M (x )

)
(7)

and the likelihood function associated with analogous observations

for an iCTMC as

L(a,b, x ; data) = Pr (data until x |a,b, x)·Pr (data after x |a,b, x)

=
(
aN (x )e−ax

)
·

(
bM (x )e−b(w−x )

)
. (8)

Applying the Bayes theorem to the prior joint distribution f (a,b, x)
and to these likelihood functions yields the result from (5) and (6),

respectively. □

As we explain later in this section, our iCPD method:

• avoids the difficulty and bias of choosing a multivariate prior
distribution f (a,b, x) (which is hard to be elicited from human

experts in practice and implicitly introduces unjustified assump-

tions) by reducing the number of unknowns;

• determines the posterior estimates of interest with lower compu-

tational cost than the traditional way of using Gibbs samplings

for (5) and (6) (e.g., [25]);

• uses a lightweight mechanism to only trigger the CPD analysis

under certain conditions, reducing the CPD overheads further.

iCPD operates in conjunction with the IPSP robust Bayesian esti-

mator described in Section 2.2, as an end-to-end Bayesian approach

to CPD and estimation of interval Markov chain parameters. This

approach is shown in Fig. 2, and its four steps are detailed next.

1 IPSP estimation – IPSP runs as the online robust Bayesian estima-

tor for the uncertain transition parameters of the interval Markov

chain under verification. As described in Sec. 2.2, this provides

bounded estimates for the transition parameter, e.g., (3) for iDTMCs.

2 iCPD triggering – The width of the interval defined by the

IPSP bounds from step 1 is monitored, and increases in this width

are used to trigger a change-point detection analysis. This trigger

exploits the ability of IPSP to detect prior-data conflicts [26], i.e.,
conflicts between prior beliefs and the observed data in Bayesian

inference. For an iDTMC transition probability for instance, the

interval width can be written [43] as a sum of two terms:
3

pi j
(ni )− pi j

(ni ) =
ni

(0)
(
pi j

(0)
−pi j

(0)
)

ni
(0) + ni

+
∆(ni )ni

(
ni

(0) − ni
(0)
)(

ni
(0)+ni

) (
ni (0)+ni

) (9)

where

∆(ni )= ∆

(
ni j

ni
;pi j

(0),pi j
(0)

)
=


ni j
ni − pi j

(0), if

ni j
ni > pi j

(0)

pi j
(0) −

ni j
ni , if

ni j
ni < pi j

(0)

0 otherwise

(10)

represents [43] the degree of prior-data conflict after observation ni .
The first term in (9) decreases as ni grows (and becomes negligible

for ni ≫ 1), whereas the second term becomes suddenly positive

when a prior-data conflict

ni j
ni <

[
pi j

(0),pi j
(0)
]
occurs, leading to

an increase in the interval width (also cf. Remark 4.2 in [43]).

Note that the computational cost of our iCPD triggering is negli-

gible, as the IPSP interval width can be computed in constant time.

Additionally, as we will show in Section 4, the sensitivity of the

iCPD trigger can be configured by adjusting the IPSP estimator pa-

rameters and the size of the sliding window for the observations (4).

3 iCPD analysis – This step is executed infrequently, i.e., only

when the iCPD trigger from step 2 is exercised. To further lower

the iCPD overheads, we reduce the number of unknowns from the

multivariate Bayesian estimator in Proposition 3.1 by replacing a
and b with their maximum likelihood estimations (MLEs) calcu-

lated using the observations made until and after the (unknown)

change point x , respectively. The justification for using these MLEs

is twofold. First, since no prior-data conflict exists until x , the ob-
servations collected until x reflect well the true value of a. Second,
after the sudden change at time x , we have no prior knowledge

about the new value of the transition parameter, so using the MLE

for b is the best strategy available. The next result formalises the

effect of using the two MLEs for an iDTMC transition probability.
4

Proposition 3.2. Using the MLEs for a and b in the multivari-
ate Bayesian estimator from Proposition 3.1, and assuming no prior
knowledge about the change point x reduces the posterior (5) to:

3
The calculations for an iCTMC transition rate are entirely similar, and not included

in the paper due to space constraints.

4
The adjustments needed to replicate this result for an iCTMC transition rate are

summarised at the end of the description for this step.
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fX (x | data) =
LX (x ; data)∑ni
x=1 LX (x ; data)

, where LX (x ; data) = (11)

N (x)N (x )(x−N (x))x−N (x )M(x)M (x )(ni−x−M(x))ni−x−M (x )

xx (ni − x)ni−x
.

Proof. For an iDTMC transition probability, the MLEs for a and

b are â = N (x )
x and

ˆb = M (x )
w−x , so the likelihood (7) becomes:

LX (x ; data) = Pr (data | x) =(
N (x )
x

)N (x ) (
1−

N (x )
x

)x−N (x ) (M (x )
ni−x

)M (x )(
1−

M (x )
ni−x

)ni−x−M (x ) (12)

Additionally, with no prior knowledge of where the change point x
is, we need to assume a discrete uniform distribution fX (x) for it:

∀x ∈ {1, 2, . . . ,ni }, fX (x) = 1/ni . (13)

The posterior (11) can now be obtained by using the likelihood (12)

(after simple algebraic manipulations) and the prior (13) in (5), with

the Lebesgue-Stieltjes integration rewritten as a summation. □

To estimate the univariate posterior distribution (11), iCPD uses

theMarkov chainMonte Carlo (MCMC)methodwith theMetropolis-

Hastings algorithm (whose presentation is out of the scope here,

but is available in [23]). This yields an MCMC sample sequence

⟨x1, x2, . . . , xk ⟩ (14)

for the change point x , and from this iCPD computes a sample

sequence

⟨b1,b2, . . . ,bk ⟩ =

〈
M(x1)

ni − x1
,
M(x2)

ni − x2
, . . . ,

M(xk )

ni − xk

〉
(15)

for the unknown transition probability b. Note that computing the

latter sequence in this way is far more efficient than using Gibbs

sampling (if we treat b as an unknown) to obtain bi , 1 ≤ i ≤ k ,
from a conditional probability distribution given xi .

Given theMCMC sample sequences (14) and (15), iCPD computes

the change point as

x̂ =

∑k
i=1 xi

k
(16)

and calculates the following new IPSP prior intervals (2):[
ni

(0),ni
(0)
]
= [w−max{x1, x2, . . . , xk },w−min{x1, x2, . . . , xk }][

pi j
(0),pi j

(0)
]
= [min{b1,b2, . . . ,bk },max{b1,b2, . . . ,bk }] (17)

These calculations can be preceded by an elimination of any outliers

that might be present in the sequences (14) and (15).

iCPD performs calculations similar to (12)–(17) for an iCTMC

transition rate. These calculations treat a and b as rates, start from

the likelihood function (8) to compute the univariate likelihood

function

Pr (data | x) =

(
N (x)

x

)N (x )
e−x ·

(
M(x)

w − x

)M (x )
e−M (x ), (18)

and yield prior rate intervals

[
ri j

(0), ri j
(0)
]
instead of the prior

probability intervals

[
pi j

(0),pi j
(0)
]
in (17).

4 Retrospective IPSP estimation – The IPSP estimates[
pi j

(x̂ ),pi j
(x̂ )
]
,
[
pi j

(x̂+1),pi j
(x̂+1)

]
, . . . ,

[
pi j

ni ,pi j
ni
]

(19)

after the change point (16) are retrospectively corrected.
5
To this

end, the IPSP estimator is reapplied to the observations ox̂+1, ox̂+2,
. . . , oni using the new priors (17), and the corrected interval esti-

mates are used to retrospectively revise and re-analyse the interval

Markov chain under verification. This is often essential in order to

establish the impact that the sudden change has already had on the

modelled system, e.g., due to additional energy that may have been

used or (as we will show in Section 4) loss of throughput between

the change point and its detection time.

4 EVALUATION
4.1 Research questions
We evaluated our iCPD approach by performing extensive experi-

ments to address the following research questions.
6

RQ1 (Accuracy): How accurately does iCPD detect points of
change in various scenarios? We carried out experiments to as-

sess the ability of iCPD to detect a wide range of changes.

RQ2 (Configurability): How easy is to configure iCPD to op-
erate with different trade-offs?We assessed the ease of calibrat-

ing iCPD to operate with data window sizes and triggering sen-

sitivities that support different needs in terms of detection speed

and/or trade-offs between false positives and false negatives.

RQ3 (Efficiency:) What are the computational overheads of
iCPD ? Since we devised iCPD for the runtime detection of change

points in the transition parameters of interval Markov chains,

we measured its overheads across a range of configurations and

parameter-change scenarios.

RQ4 (Verification support): How effectively does iCPD sup-
port the accurate PMCof system-level properties at runtime?
We examined the effect of using iCPD to continually update inter-

val Markov chain parameters, supporting the runtime PMC of key

system properties.

4.2 Evaluation methodology
Our experimental setup comprises a wide range of nine scenarios

in which each scenario corresponds to a sequence of observations

o1,o2, . . . ,oni for the unknown transition parameter (probability

pi j or rate ri j for iDTMC and iCTMC, respectively) instrumented

with changes representing four classes of change patterns com-

monly studied in related research [15, 28]. In particular, we used

the following patterns: (i) Step where a sudden change causes the

5
We only describe this step for an iDTMC transition probability, as its application to

an iCTMC transition rate is entirely similar.

6
Note that a direct comparison of the iCPD accuracy, efficiency, etc. with those of

existing CPD approaches is not possible because, by tackling change-point detection

for point estimates of system parameters, these CPD approaches solve a different

problem than iCPD .



ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhao et al.

parameter value to increase instantaneously; (ii) Square that ex-
tends the Step pattern with another sudden change indicating a

recovery of the parameter to its original value; (iii) Ramp that rep-

resents a gradual or steep change to the parameter value; and (iv)

Fixed where the parameter value remains constant for the duration

of the scenario (to assess whether iCPD produces false positives).

To answer RQ1–RQ3, for each scenario we firstly define an un-
known change point x (as ground truth) and the unknown actual

(ground truth) transition parameter values a and b before and after

the change point x , respectively. All this information is unknown to

iCPD. Then, for iDTMCs we generate the sequence of observations

o1,o2, . . . ,oni by sampling from two Binomial distributions whose

probabilities are a and b, respectively. Similarly, the sequence of

observations for iCTMCs is sampled from two exponential distribu-

tions whose mean time is set to
1

a and
1

b , respectively. Finally, we

run the scenario by providing to iCPD the observations in order as

described in Section 3.2.

We answer RQ4 using the CTMC model of an embedded system

from the area of autonomous underwater vehicles (AUV) adapted

from [16, 31]. The AUV is deployed on an oceanic surveillance mis-

sion, and the successful mission completion requires the continual

verification of the CTMC model to ensure compliance with a pair

of reliability and performance requirements. The AUV is equipped

with several on-board sensors whose operating rates are unknown

and could potentially vary due to sensor failure or degradation in

operating rate. We combine our iCPD with the probabilistic model

checker Prism-PSY [18] and evaluate the extent to which iCPD can

detect abrupt changes in sensor rates and update the transition

parameters of the CTMC, thus supporting the prompt system re-

configuration due to the violation of mission requirements.

All experiments were run on a Windows 10 Pro 64 bit machine

with Intel 1.80GHz i7-8550U CPU and 16GB RAM. The source code,

Markov models, data used for the experimental evaluation and the

full experimental results are publicly available at https://github.

com/x-y-zhao/iCPD.

4.3 Results and discussion
RQ1 (Accuracy). Fig. 3 shows the estimated iCPD transition prob-

ability interval for the unknown transition probability pi j over nine
iDTMC scenarios instrumented with the following change patterns:

(A) big step, (B) medium step, (C) small step, (D) square represent-

ing a normal recovery, (E) square representing a quick recovery,

(F) steep ramp, (G) gradual ramp, (H) early big step and (I) fixed.

Table 1 presents the configurations used for each scenario includ-

ing the change pattern and the (unknown) actual values for both

the change point x and the transition probability pi j , along with

iCPD-related analysis results, i.e., the estimated change point x̂ , the
trigger point xt and the total computational cost (both representing

the timing information of iCPD’s runtime analysis). Fig. 4 shows

the approximated posterior distributions of x and b derived from

MCMC sampling corresponding to the scenarios from Fig. 3.

In scenario A (Fig. 3A, row A in Table 1), i.e., the big step pi j
change from a = 0.3 to b = 0.7 at change point x = 500, we observe

that the interval width of the IPSP estimator (the solid green and

purple lines) continually decreases as new observations are made

signifying no prior-data conflict. At observation o690 (the vertical

blue line), iCPD detects the change that occurred at o500 causing
a prior-data conflict (10). This detection triggers the CPD analy-

sis (Step 3 in Section 3.2) which utilises the information up to

the triggering point to approximate the posterior distribution of x
(Fig. 4A#1) concluding that the change happened at x̂ = 504 (the

yellow vertical line), which is very close to the actual change point

x = 500. Similarly, iCPD approximates the posterior distribution of

b (Fig. 4A#2) and uses (17) to estimate the new IPSP prior intervals[
ni

(0),ni
(0)
]
= [165, 322],

[
pi j

(0),pi j
(0)
]
= [0.508, 0.740] which cap-

ture the unknown transition probability b = 0.7. Starting from the

estimated change point x̂ = 504 and the new IPSP prior intervals,

iCPD uses observations o504, ...,o690 to execute the retrospective

IPSP estimation (Step 4 in Section 3.2) and refine the IPSP interval

(dashed lines labelled “retrospected” and showing retrospectively

corrected lower and upper bounds in Fig 3A). For completeness,

the dotted lines show the transition probability interval estimated

by the IPSP estimator without the CPD capability (cf. Section 2.2).

Clearly, the change is not detected and a significant number of new

observations is needed before the estimated interval encloses the

updated transition probability.

The scenario shown in Fig. 3B corresponds to a medium step

change of the unknown transition probability pi j from 0.3 to 0.5.

iCPD detects the change and triggers the iCPD analysis (xt =
976). As expected, the change is detected later than the big step

change in scenario A, because the term ni j/ni needs more data (and

consequently more time) after the change point to accumulate to a

level that leads to a positive degree of prior-data conflict, i.e. ∆(ni ) >

0 in (10). Similarly to scenario A, the estimated change point x̂ = 492

is very close to the actual change point x = 500 (Fig. 4B#1) and the

new IPSP prior interval

[
pi j

(0),pi j
(0)
]
= [0.492, 0.527] captures the

new unknown transition probability b = 0.5 (Fig. 4B#2).

In contrast to the previous step changes, the small step change

in scenario C (Fig. 3C) does not trigger the iCPD analysis. This

behaviour occurs because as new observations are made, the term

ni j/ni is asymptotic to the upper bound of the IPSP estimated

interval pi j
(0)
= 0.4 – but very unlikely to exceed it (because ni j/ni

also averages the data collected before x which is concentrated on

a = 0.3). Hence, no prior-data conflict is detected in (10).

In scenario D (Fig. 3D), iCPD correctly detected both changes cor-

responding to the normal recovery pattern triggering the iCPD anal-

ysis at xt = 623 and xt = 1358 and accurately estimating change

points x̂ = 499 (Fig. 4D#1) and x̂ = 896 (Fig. 4D#3), and the new

IPSP prior intervals (Fig. 4D#2 and Fig. 4D#4)). Although scenario E

(Fig. 3E) follows a similar square pattern, the quick recovery pre-

vents iCPD from identifying the prior-data conflict and triggering

the analysis. We evaluate in RQ2 how adjusting the iCPD hyper-

parameters, cf. (3) and (9), can increase the iCPD “sensitivity” and

enable the detection of small and ephemeral changes.

The steep and gradual ramp scenarios in Figs. 3F and 3G, respec-

tively, demonstrate the competency of iCPD to cope adequately

with this class of changes. More specifically, iCPD performs particu-

larly well in the steep ramp scenario triggering the iCPD analysis at

xt =750 and calculating close approximations of the change point

x̂ = 545 (Fig. 4F#1) and new IPSP prior intervals (Fig. 4F#2). The

gradual ramp scenario ismore difficult due to the (unknown) smaller

https://github.com/x-y-zhao/iCPD
https://github.com/x-y-zhao/iCPD
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Table 1: Configurations and iCPD results over nine iDTMC scenarios. In all scenarios, the IPSP prior parameters are set to
[pi j

(0),pi j
(0)
] = [0.2, 0.4] and [n(0),n(0)] = [10, 300]. The scenario ID is associated with the corresponding subfigure in Fig 3 (No-

tations – x : change point; xt : iCPD trigger point; x̂ : iCPD estimated change point; k/l : ratio of accepted samples over the total
number of MCMC trials; ⟨x1, . . . , xk ⟩: MCMC sample sequence of the change point; ⟨b1, . . . ,bk ⟩: sample sequence of transition
probability b; N/A: iCPD not triggered).

ID Pattern (unk.) actual values iCPD analysis
# a b x xt x̂ k/l ⟨x1, . . . , xk ⟩ ⟨b1, . . . ,bk ⟩ time (ms)
A Step (big) 0.3 0.7 500 690 504 1733/5k Fig. 4A#1 Fig. 4A#2 445
B Step (medium) 0.3 0.5 500 976 492 2578/5k Fig. 4B#1 Fig. 4B#2 414
C Step (small) 0.3 0.4 500 N/A
D Square (normal recovery) 0.3 0.7 500, 900 623, 1358 499, 896 1571/5k, 4169/10k Fig. 4D#1,3 Fig. 4D#2,4 392, 810
E Square (quick recovery) 0.3 0.7 500, 600 N/A
F Ramp (steep) 0.3 0.7 [500, 600] 750 544 3987/10k Fig. 4F#1 Fig. 4F#2 790
G Ramp (gradual) 0.3 0.7 [500, 900] 1003 651 4046/10k Fig. 4G#1 Fig. 4G#2 862
H Step (big and early) 0.3 0.7 100 131 93 2082/5k Fig. 4H#1 Fig. 4H#2 402
I Fixed 0.3 0.3 N/A 800 (man.) N/A 3386/5k Fig. 4I#1 Fig. 4I#2 398

slope which entails more time to reach the final value and complete

the change. Since ramp changes (especially those with a gradual

structure) do not by definition constitute sudden changes [1, 42],

the observed behaviour is expected and does not violate the statis-

tical model underpinning iCPD. Extending iCPD with support for

more accurate analysis of ramp changes is planned for future work.

In scenario H (Fig. 3H), we examined how the timing of a change

affects the iCPD accuracy by introducing early in the execution

(x = 100), the same big step change as in scenario A. The esti-

mated change point x̂ =93 (Fig. 4H1) is fairly accurate. Due to the

significantly smaller number of observations available during the

iCPD analysis step (xt = 131), the new IPSP prior interval is unsur-

prisingly wider compared to that from scenario A. Even though the

change occurs early, the end of the scenario finds the IPSP estimator

alone (i.e., without change-point detection capability) incapable to

adapt its interval to include the new parameter value (dotted lines

in Fig. 3H). This result once more shows the usefulness of iCPD.

Finally, we consider the scenario where the unknown transition

parameter value is fixed throughout the scenario (Fig. 3I). As ex-

pected, the IPSP interval keeps decreasing and no iCPD analysis is

triggered. Enforcing iCPD to run at the end of the scenario resulted

in a nearly uniform posterior distribution of x (Fig. 4I#1) signifying

the “high uncertainty” for the location of the change point. Hence,

we have evidence that iCPD is not affected by false positives.

We provide a similar set of scenarios for iCTMCs on our project

webpage at https://github.com/x-y-zhao/iCPD that demonstrate

very similar results. Given these experimental results, we have suf-

ficient evidence to conclude that iCPD can support the detection

of sudden changes in the transition parameters of iDTMCs and

iCTMC under several change patterns and steer the estimation of

new IPSP prior intervals that enclose the new parameter value.

RQ2 (Configurability). The sensitivity of the iCPD triggering

Eq. (9) can be configured either bymodifying the prior parameters of

the IPSP estimator in (2) or by assigning different importance levels

to observations o1,o2, . . . ,ow based on temporal conditions. To

answer this research question and assess whether iCPD can support

the detection of small and/or transient changes, we evaluated how

iCPD performs under different sensitivity configurations.

First, we introduced a sliding time window based on which

iCPD discards old observations and operates using only observa-

tions falling within this time window. We evaluated iCPD enhanced

with a time window in scenario C that includes a small step change

(cf. row C in Table 1) and for which the standard iCPD did not

detect a conflict (cf. Fig 3C). Using a time window of size 500, this

iCPD variant detected the prior-data conflict at xt = 924 triggering

the iCPD analysis and calculating new IPSP prior intervals that

include the updated transition probability (Fig 5A). By consider-

ing the 500 most recent observations, the term ni j/ni in (10) is

influenced more by these observations leading to a positive degree

of prior-data conflict. Similar reasoning has been applied in [15]

which assigns ageing information to observations.

Second, we specified narrower IPSP prior intervals by setting

[pi j
(0),pi j

(0)
]= [0.25, 0.35] and [n(0),n(0)]= [5, 150] and evaluated

iCPD in scenario E (row E in Table 1) that corresponds to a quick

recovery. Compared to the iCPD configuration used in RQ1, under

which both changes in scenario E were missed (Fig. 3), the nar-

rower IPSP prior intervals enabled iCPD to detect the first change

despite its short duration (occurring in observations o500–o600) and
accurately estimate the change point (x̂ = 498). Given the sparse

observations about the new unknown transition parameter after

the first change pi j = 0.7, the new IPSP prior intervals are unsur-

prisingly wider than usual; this finding aligns with our results in

scenario H, cf. Fig. 3H. The wide IPSP prior intervals and sparse ob-

servations are the primary reasons causing iCPD to miss the second

change (i.e., the recovery). CPD using sparse information is widely

acknowledged as a very challenging problem [1, 42]. Investigating

how iCPD can handle more accurately changes of this type is part

of our future work.

Finally, we evaluated an iCPD variant that employs both a time

window and narrower IPSP prior intervals using scenario I (cf.

Fig 3). Although in this scenario the value of the unknown transi-

tion parameter is fixed (and since no prior-data conflict occurs no

iCPD analysis should be triggered), this iCPD variant is proven very

https://github.com/x-y-zhao/iCPD
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Figure 3: iCPD results over nine iDTMC scenarios with the configuration shown in Table 1 instrumented with the change
patterns: (A) big step, (B) medium step, (C) small step, (D) square – normal recovery, (E) square – quick recovery, (F) steep
ramp, (G) gradual ramp, (H) early big step and (I) fixed.

sensitive (Fig. 5C). More specifically, this iCPD variant is susceptible

to small fluctuations in term ni j/ni in (10) leading to four false pos-

itives, i.e., incorrectly triggering the iCPD analysis. In Fig. 5C, we

also show the width of the IPSP interval and circle the times when

these false alarms were triggered. Since the IPSP interval almost

always enclosed the unknown transition probability, these false

positives had only a minor effect on the overall iCPD behaviour.

These findings clearly indicate that increasing the sensitivity

of iCPD can enable the detection of small and ephemeral changes.

Nevertheless, this should be handled with caution to achieve a

balanced trade-off between false positives and false negatives.

RQ3 (Efficiency). We answer this research question by analysing

the overheads over the steps comprising the iCPD approach (Sec-

tion 3.2). The IPSP estimation and the iCPD triggering steps use the

closed-form formulas in (3) and (9) whose computational costs are

constant and negligible. Similarly, the retrospective IPSP estimation

step applies the closed-form formula of the IPSP estimator in (3) to

the observations ox̂ , ox̂+1, etc. As we have shown in RQ1 and RQ2

(cf. Table 1 and Fig. 3), the length of each sequence of observations,

given by xt − x̂ , is typically small. Hence, the final iCPD step has

also insignificant overheads.

Only the iCPD analysis step requires further overheads investi-

gation due to using MCMC [23] to generate the sample sequence

in (14). To quantify the overheads of this step, we replicated scenar-

ios A and B (cf. Table 1) and varied the number of conducted MCMC

trials ∈ [0, 15000], while tuning the MCMC proposal distribution

to keep the MCMC acceptance rate around 0.20–0.24 which is the

MCMC diagnostics step [22] (Fig. 6 (right)). As shown in Fig. 6 (left),

the computation time increases linearly with the number of MCMC

trials and consumes more than 1 second only when the sampling

size exceeds 13000. The rightmost column in Table 1 shows the time

consumed by iCPD to execute its steps when a change has been

detected (with a maximum of 10000 MCMC samples per change).

Irrespective of the scenario and change pattern, the overheads are

always below 1 second.
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Figure 4: x and b posterior distributions corresponding to scenarios in Table 1 approximated by histograms of MCMC samples.

Figure 5: iCPD results with different sensitivity configurations. iCPD with time window (left), with narrower IPSP prior inter-
vals (middle), and with both time window and narrower IPSP prior intervals (right) used in scenarios C, E, and I, respectively.

Similarly to [25], we assessed the accuracy of iCPD by measuring

the estimation error E of the change point given by E = |ec−rc |
rc ,

where ec and rc are the estimated and real change points, respec-

tively. In both scenarios, the E is relatively stable and smaller than

0.02 after 2000 MCMC trials; Fig. 6 (middle). As expected, the more

MCMC trials conducted themore precise the iCPD estimation. Since

in all our scenarios the minimum number of MCMC trials was 5000,

we have evidence that iCPD has a fairly small change-point estima-

tion error.

RQ4 (Verification support). We combined iCPD with the prob-

abilistic model checker Prism-PSY [18] to establish if this inte-

grated solution can support the effective PMC of the iCTMC of

an autonomous underwater vehicle (AUV) by accurately detecting

change points and estimating the updated transition rate intervals.

This iCTMC model, which has been used in related research [31,

32, 41], models an AUV equipped with n ≥ 1 sensors that can

make observations of an oceanic parameter (e.g., salinity). The

n sensors can be switched on and off individually (e.g., to save
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Figure 6: iCPD overheads in scenarios A and B showing computation time (left), change point estimation error (middle), and
MCMC diagnostics acceptance rate [23] (right) over the number of conducted MCMC trials.

Figure 7: Runtime analysis results of an AUV surveillance mission in which the sudden change of the i-th sensor rate at
mission time 300s from 6Hz to 2Hz is detected by iCPD with a trigger point at 358s and an estimated change point at 299s (left
- reusing the legends of Fig. 3). The revised transition rate interval correctly encloses the updated sensor rate, and the PMC
results of mission requirements R1 (middle) and R2 (right), in which shaded areas show requirement violation, lead to the
selection of a new sensor configuration.

battery power when not used). When sensor i is switched on, it

makes observations of the oceanic parameter with unknown and

variable operating rate ri . During operation, the AUV must adapt

to changes in the operating rate ri of its sensors due to failure or
service degradation by adjusting its speed and sensor configurations

so that the following requirements are satisfied at all times
7
:

R1: An active sensormust make at least 20 observations of sufficient

accuracy per 10 surveyed metres.

R2: The energy consumed by each sensor should not exceed 120

Joules per 10 surveyed metres.

Fig. 7 (left) shows the estimated IPSP transition rate interval

that accurately captures the actual operating rate of the i-th sensor.

After 300 seconds of operation, the AUV experiences a sudden ser-

vice degradation of its currently active i-th sensor that reduced the

sensor’s operating rate from 6Hz to 2Hz. iCPD detects this change

at xt = 358 and triggers the iCPD analysis leading to the correct

estimation of the change point x̂ =299 and the accurate calculation

of the revised IPSP prior interval that encloses the updated sensor

operating rate. The revised transition rate interval is employed for

the verification of requirements R1 and R2 over the iCTMC using

Prism-PSY. Although requirement R2 is always met (Fig. 7 (right)),

the reduced sensor rate results in the violation of R1, depicted by

the shaded area in Fig. 7 (middle), requiring the AUV controller

7
We only use the set of requirements needed to demonstrate the combined use of

iCPD and Prism-PSY. For the complete set of system-level requirements, see [31].

to select another sensor configuration that meets both R1 and R2

for all active sensors. To simplify the presentation, we do not show

this reconfiguration task; for further information about this task,

see [31]. iCPD can also establish the period during which require-

ment R1 was violated (i.e., xt − x̂ ) enabling the AUV controller to

identify the region in which insufficient observations have been

made, thus instructing the AUV to revisit this region and make

additional observations to meet R1 for the region.

4.4 Threats to validity
Construct validity threats may arise due to simplifications and

assumptions made when designing the evaluation methodology

and instrumenting the investigated scenarios with the changes de-

scribed in Section 4.2. To mitigate this threat, we devised changes

that conform to four classes of change patterns (i.e., Step, Square,

Ramp, Fixed) widely studied in the literature [15, 25, 28]. The

iCTMC model of the AUV system used to answer RQ4 has also

been used in related research [16, 31, 41].

Internal validity threats may correspond to bias in establishing

cause-effect relationships in our experiments. We limit them by

examining instantiations of the four classes of change patterns for

multiple values of the unknown transition parameters a and b (cf.

Proposition 3.1), and for multiple pattern configurations concerning

the change duration (Table 1). We reduce further the risk of biased

results due to using a fine-tuned iCPD by comparing it against a
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CPD-agnostic IPSP estimator, showing that although the intervals of

both estimators typically become narrower with new observations,

the CPD-agnostic estimator is in most scenarios unable to adapt

its interval to include the new parameter value. We also performed

experiments with varied numbers of MCMC trials, showing that

more MCMC trials lead to better estimates of the change point x̂ ,
thus conforming to the Bayesian practice [23]. Finally, we enable

replication by making all experimental results publicly available on

our project webpage https://github.com/x-y-zhao/iCPD.

External validity threats might challenge the generalisability of

our findings to other types of systems and processes; thus, we miti-

gate these threats as follows. Since iCPD requires the sequence of

observations o1, ...,oni as defined in (4), we limit this threat by de-

vising iCPD to work in running systems enhanced with closed-loop

controls (e.g., MAPE-K [34]), which include a monitor component

that continually monitors the system and records data about its

behaviour. Another threat might occur if the sensitivity level of

iCPD is inapplicable for the target system. We mitigated this by

demonstrating how configuring the iCPD hyper-parameters (e.g.,

IPSP estimator prior intervals, monitoring windoww size) enables

achieving the desired trade-off between false positives and false

negatives. Finally, to further reduce the risk that iCPD might be

difficult to use in practice, we validated it both using iDTMCs and

iCTMCs, and showed in RQ4 how it can be integrated with the

probabilistic model checker Prism-PSY to verify key system prop-

erties (cf. Fig. 2). Nevertheless, additional experiments are needed

to establish further the generalisability of iCPD in interval Markov

chains modelling software systems other than those used in our

evaluation.

5 RELATEDWORK
CPD analysis has been widely studied and successfully applied in

many areas, including software engineering [20], climate change [5]

and medicine [38]. From the numerous types of CPD solutions

developed by this research (likelihood ratio methods, kernel-based

methods, etc. – see [1] for a survey), iCPD falls into the category of

hierarchical Bayesian models (HBMs) [17], i.e., CPD methods that

rely on MCMC techniques to calculate change-point posteriors.

However, existing HBM methods employ MCMC each time a

new data point becomes available, which is too computationally

expensive for online analysis. This is also true about [25], which

– to the best of our knowledge – is the only other project that

has tackled CPD for (discrete-time) Markov chain parameters. In

contrast, iCPD use a lightweight trigger to decide when this MCMC-

based CPD analysis is needed, and can therefore be much more

efficiently used for online CPD.

Additionally, current HBM methods (including [25]) compute

point estimates for parameters affected by sudden changes. As

emphasised in [6], point estimates of (uncertain) parameters can

rarely be justified in practice. Unlike these methods, which it com-

plements, iCPD focuses on interval CPD, computing new intervals

of priors that support the robust Bayesian estimation of the uncer-

tain parameters after the detected change point.

Bayesian methods to learn the transition parameters of Markov

chains at runtime have been proposed in [24, 27], and a light-

weight adaptive filter is introduced in [28] to reduce noise and

provide smooth estimates. However, those approaches do not con-

sider change-points explicitly, and need a relatively long time to

make accurate estimates after sudden changes. In addition, these ap-

proaches yield point estimates that can be affected by unquantified

and potentially significant errors. The work in [12] is the first to

synthesise bounds for unknown transition probabilities of DTMCs,

based on the frequentist theory of simultaneous confidence inter-

vals. The only Bayesian approach to computing bounded estimates

for PMC that we are aware of is [45]. Our iCPD builds on this robust

Bayesian estimator and, to the best of our knowledge, is the first

that provides CPD analysis for PMC with interval Markov models.

6 CONCLUSION & FUTUREWORK
We introduced iCPD, an end-to-end Bayesian approach to change-

point detection and estimation of interval Markov chain parameters.

iCPD enables the quantitative verification of systems affected by

parametric uncertainty [14], as using point estimates for the pa-

rameters of these systems hides this uncertainty [6] and can lead

to highly inaccurate verification results that may endorse invalid

software engineering decisions [10, 12].

Our experimental evaluation comprising scenarios instrumented

with changes from four widely studied classes of change patterns

showed that (i) iCPD can detect different types of changes accu-

rately and efficiently; (ii) adjusting the iCPD hyper-parameters

can enable achieving different trade-offs between false alarms and

missed changes; and (iii) iCPD supports the effective runtime PMC

of systems affected by parametric uncertainty. As future work, we

plan to extend iCPD with support for other patterns of change

(e.g., waves, triangles), and to investigate principled mechanisms

of eliciting the IPSP priors.
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